Encoder Technologies

Conductive. A series of circumferential copper tracks etched onto a PCB is used to encode the information. Contact brushes sense the conductive areas. This form of encoder is now rarely seen except as a user input in digital multimeters.

Optical. This uses a light shining onto a photodiode through slits in a metal or glass disc. Reflective versions also exist. This is one of the most common technologies. Optical encoders are very sensitive to dust.

On Axis Magnetic. This technology typically uses a specially magnetized 2 pole neodymium magnet the same size as the motor shaft that typically requires a custom motor shaft be used. The accuracy is very bad and does not allow many resolution options. This technology does not typically offer UVW or Z pulse outputs. Due to the 2 pole magnet there is lots of jitter on the output due to the internal interpolation.

positek

Off Axis Magnetic. This technology typically employs the use of rubber bonded ferrite magnets attached to a metal hub. This offers flexibility in design and low cost for custom applications. Due to the flexibility in many off axis encoder chips they can be programmed to accept any number of pole widths so the chip can be placed in any position required for the application. Magnetic encoders operate in harsh environments where optical encoders would fail to work.

Absolute and incremental sensors

An “absolute” encoder maintains position information when power is removed from the system. The position of the encoder is available immediately on applying power. The relationship between the encoder value and the physical position of the controlled machinery is set at assembly; the system does not need to return to a calibration point to maintain position accuracy. An “incremental” encoder accurately records changes in position, but does not power up with a fixed relation between encoder state and physical position. Devices controlled by incremental encoders may have to “go home” to a fixed reference point to initialize the position measurement. A multi-turn absolute rotary encoder includes additional code wheels and gears. A high-resolution wheel measures the fractional rotation, and lower-resolution geared code wheels record the number of whole revolutions of the shaft.

An absolute encoder has multiple code rings with various binary weightings which provide a data word representing the absolute position sensors of the encoder within one revolution. This type of encoder is often referred to as a parallel absolute encoder.

An incremental encoder works differently by providing an A and a B pulse output that provide no usable count information in their own right. Rather, the counting is done in the external electronics. The point where the counting begins depends on the counter in the external electronics and not on the position of the encoder. To provide useful position information, the encoder position must be referenced to the device to which it is attached, generally using an index pulse. The distinguishing feature of the incremental encoder is that it reports an incremental change in position of the encoder to the counting electronics.